Fat-Tailed Distributions

Data, Diagnostics and Dependence, Volume 1

Leesfragment
€139,99
  • This
  • title
  • is
  • written
  • for
  • the
  • numerate
  • nonspecialist,
  • and
  • hopes
  • to
  • serve
  • three
  • purposes.
  • First
  • it
  • gathers
  • mathematical
  • material
  • from
  • diverse
  • but
  • related
  • fields
  • of
  • order
  • statistics,
  • records,
  • extreme
  • value
  • theory,
  • majorization,
  • regular
  • variation
  • and
  • subexponentiality.
  • All
  • of
  • these
  • are
  • relevant
  • for
  • understanding
  • fat
  • tails,
  • but
  • they
  • are
  • not,
  • to
  • our
  • knowledge,
  • brought
  • together
  • in
  • a
  • single
  • source
  • for
  • the
  • target
  • readership.
  • Proofs
  • that
  • give
  • insight
  • are
  • included,
  • but
  • for
  • most
  • fussy
  • calculations
  • the
  • reader
  • is
  • referred
  • to
  • the
  • excellent
  • sources
  • referenced
  • in
  • the
  • text.
  • Multivariate
  • extremes
  • are
  • not
  • treated.
  • This
  • allows
  • us
  • to
  • present
  • material
  • spread
  • over
  • hundreds
  • of
  • pages
  • in
  • specialist
  • texts
  • in
  • twenty
  • pages.
  • Chapter
  • 5
  • develops
  • new
  • material
  • on
  • heavy
  • tail
  • diagnostics
  • and
  • gives
  • more
  • mathematical
  • detail.
  • Since
  • variances
  • and
  • covariances
  • may
  • not
  • exist
  • for
  • heavy
  • tailed
  • joint
  • distributions,
  • Chapter
  • 6
  • reviews
  • dependence
  • concepts
  • for
  • certain
  • classes
  • of
  • heavy
  • tailed
  • joint
  • distributions,
  • with
  • a
  • view
  • to
  • regressing
  • heavy
  • tailed
  • variables.Second,
  • it
  • presents
  • a
  • new
  • measure
  • of
  • obesity.
  • The
  • most
  • popular
  • definitions
  • in
  • terms
  • of
  • regular
  • variation
  • and
  • subexponentiality
  • invoke
  • putative
  • properties
  • that
  • hold
  • at
  • infinity,
  • and
  • this
  • complicates
  • any
  • empirical
  • estimate.
  • Each
  • definition
  • captures
  • some
  • but
  • not
  • all
  • of
  • the
  • intuitions
  • associated
  • with
  • tail
  • heaviness.
  • Chapter
  • 5
  • studies
  • two
  • candidate
  • indices
  • of
  • tail
  • heaviness
  • based
  • on
  • the
  • tendency
  • of
  • the
  • mean
  • excess
  • plot
  • to
  • collapse
  • as
  • data
  • are
  • aggregated.
  • The
  • probability
  • that
  • the
  • largest
  • value
  • is
  • more
  • than
  • twice
  • the
  • second
  • largest
  • has
  • intuitive
  • appeal
  • but
  • its
  • estimator
  • has
  • very
  • poor
  • accuracy.
  • The
  • Obesity
  • index
  • is
  • defined
  • for
  • a
  • positive
  • random
  • variable
  • X
  • as:Ob(X)
  • =
  • P
  • (X1
  • +X4
  • >
  • X2
  • +X3|X1
  • =
  • X2
  • =
  • X3
  • =
  • X4),
  • Xi
  • independent
  • copies
  • of
  • X.For
  • empirical
  • distributions,
  • obesity
  • is
  • defined
  • by
  • bootstrapping.
  • This
  • index
  • reasonably
  • captures
  • intuitions
  • of
  • tail
  • heaviness.
  • Among
  • its
  • properties,
  • if
  • a
  • >
  • 1
  • then
  • Ob(X)
  • <
  • Ob(Xa).
  • However,
  • it
  • does
  • not
  • completely
  • mimic
  • the
  • tail
  • index
  • of
  • regularly
  • varying
  • distributions,
  • or
  • the
  • extreme
  • value
  • index.
  • A
  • Weibull
  • distribution
  • with
  • shape
  • 1/4
  • is
  • more
  • obese
  • than
  • a
  • Pareto
  • distribution
  • with
  • tail
  • index
  • 1,
  • even
  • though
  • this
  • Pareto
  • has
  • infinite
  • mean
  • and
  • the
  • Weibull’s
  • moments
  • are
  • all
  • finite.
  • Chapter
  • 5
  • explores
  • properties
  • of
  • the
  • Obesity
  • index.Third
  • and
  • most
  • important,
  • we
  • hope
  • to
  • convince
  • the
  • reader
  • that
  • fat
  • tail
  • phenomena
  • pose
  • real
  • problems;
  • they
  • are
  • really
  • out
  • there
  • and
  • they
  • seriously
  • challenge
  • our
  • usual
  • ways
  • of
  • thinking
  • about
  • historical
  • averages,
  • outliers,
  • trends,
  • regression
  • coefficients
  • and
  • confidence
  • bounds
  • among
  • many
  • other
  • things.
  • Data
  • on
  • flood
  • insurance
  • claims,
  • crop
  • loss
  • claims,
  • hospital
  • discharge
  • bills,
  • precipitation
  • and
  • damages
  • and
  • fatalities
  • from
  • natural
  • catastrophes
  • drive
  • this
  • point
  • home.
  • While
  • most
  • fat
  • tailed
  • distributions
  • are
  • ”bad”,
  • research
  • in
  • fat
  • tails
  • is
  • one
  • distribution
  • whose
  • tail
  • will
  • hopefully
  • get fatter.
1 of 446
pro-mbooks3 : libris